

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License

Software development process
● A software development process is a structure imposed on the development of a

software product

Software development activities
● Requirements analysis

The important task in creating a software product is extracting the requirements

or requirements analysis. Customers typically have an abstract idea of what

they want as an end result, but not what software should do. Incomplete,

ambiguous, or even contradictory requirements are recognized by skilled and
experienced software engineers at this point. Frequently demonstrating live

code may help reduce the risk that the requirements are incorrect

Development Processes 1 / 51

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development activities

2 / 51

● Specification
Specification is the task of precisely describing the software to be written,

possibly in a rigorous way. Specifications are most important for external
interfaces that must remain stable. A good way to determine whether the

specifications are sufficiently precise is to have a third party review the
documents making sure that the requirements and Use Cases are logically

sound
● Architecture

The architecture of a software system or software architecture refers to an

abstract representation of that system. Architecture is concerned with making

sure the software system will meet the requirements of the product, as well as

ensuring that future requirements can be addressed

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development activities

3 / 51

The architecture step also addresses interfaces between the software system

and other software products, as well as the underlying hardware or the host

operating system
● Design, implementation and testing

Implementation is the part of the process where software engineers actually

program the code for the project.

Software testing is an integral and important part of the software development

process. This part of the process ensures that bugs are recognized as early as

possible.

Documenting the internal design of software for the purpose of future

maintenance and enhancement is done throughout development. This may also

include the authoring of an API, be it external or internal.

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development activities

4 / 51

● Deployment and maintenance
Deployment starts after the code is appropriately tested, is approved for release

and sold or otherwise distributed into a production environment.

Software Training and Support is important because a large percentage of

software projects fail because the developers fail to realize that it doesn't matter

how much time and planning a development team puts into creating software if

nobody in an organization ends up using it. People are often resistant to change

and avoid venturing into an unfamiliar area, so as a part of the deployment

phase, it is very important to have training classes for new clients of your

software.

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development activities

5 / 51

Maintenance and enhancing software to cope with newly discovered problems

or new requirements can take far more time than the initial development of the

software. It may be necessary to add code that does not fit the original design to

correct an unforeseen problem or it may be that a customer is requesting more

functionality and code can be added to accommodate their requests. It is during

this phase that customer calls come in and you see whether your testing was

extensive enough to uncover the problems before customers do.

Bug Tracking System tools are often deployed at this stage of the process to

allow development teams to interface with customer/field teams testing the

software to identify any real or perceived issues. These software tools both open

source and commercially licensed provide a customizable process to acquire,

review, acknowledge, and respond to reported issues.

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 6 / 51

Software development methodologies
● Waterfall model

The waterfall model is a sequential development process, in which

development is seen as flowing steadily downwards (like a waterfall) through the

phases of requirements analysis, design, implementation, testing (validation),

integration, and maintenance. Basic principles of the waterfall model are:
▬ Project is divided into sequential phases, with some overlap and splashback

acceptable between phases
▬ Emphasis is on planning, time schedules, target dates, budgets and

implementation of an entire system at one time
▬ Tight control is maintained over the life of the project through the use of

extensive written documentation, as well as through formal reviews and

approval/signoff by the user and information technology management

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

7 / 51

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

8 / 51

● Prototyping
Software prototyping, is the framework of activities during software development

of creating prototypes, i.e., incomplete versions of the software program being

developed. Basic principles of prototyping are:
▬ Not a standalone, complete development methodology, but rather an approach

to handling selected portions of a larger, more traditional development

methodology (i.e. Incremental, Spiral, or Rapid Application Development

(RAD))
▬ Attempts to reduce inherent project risk by breaking a project into smaller

segments and providing more ease-of-change during the development process
▬ User is involved throughout the process, which increases the likelihood of

user acceptance of the final implementation

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

9 / 51

▬ Small-scale mock-ups of the system are developed following an iterative

modification process until the prototype evolves to meet the users’

requirements
▬ While most prototypes are developed with the expectation that they will be

discarded, it is possible in some cases to evolve from prototype to working
system

▬ A basic understanding of the fundamental business problem is necessary to

avoid solving the wrong problem
● Incremental

Various methods are acceptable for combining linear and iterative systems

development methodologies, with the primary objective of each being to reduce

inherent project risk by breaking a project into smaller segments and

providing more ease-of-change during the development process

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

10 / 51

Basic principles of incremental development are:
▬ A series of mini-Waterfalls are performed, where all phases of the Waterfall

development model are completed for a small part of the systems, before

proceeding to the next incremental
▬ Overall requirements are defined before proceeding to evolutionary, mini-

Waterfall development of individual increments of the system
▬ The initial software concept, requirements analysis, and design of architecture

and system core are defined using the Waterfall approach, followed by iterative

Prototyping, which culminates in installation of the final prototype
● Spiral

The spiral model is a software development process combining elements of both

design and prototyping-in-stages, in an effort to combine advantages of top-
down and bottom-up concepts

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

11 / 51

Basic principles:
▬ Focus is on risk assessment and on minimizing project risk by breaking a

project into smaller segments and providing more ease-of-change during the

development process, as well as providing the opportunity to evaluate risks

and weigh consideration of project continuation throughout the life cycle
▬ Each cycle involves a progression through the same sequence of steps, for

each portion of the product and for each of its levels of elaboration, from an

overall concept-of-operation document down to the coding of each individual

program
▬ Each trip around the spiral traverses four basic quadarants: (1) determine

objectives, alternatives, and constrainst of the iteration; (2) evaluate

alternatives; identify and resolve risks; (3) develop and verify deliverables from

the iteration; and (4) plan the next iteration

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

12 / 51

▬ Begin each cycle with an identification of stakeholders and their win conditions,

and end each cycle with review and commitment

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

13 / 51

● Rapid Application Development
Rapid Application Development (RAD) is a software development methodology,

which involves iterative development and the construction of prototypes.

Basic principles:
▬ Key objective is for fast development and delivery of a high quality system

at a relatively low investment cost
▬ Attempts to reduce inherent project risk by breaking a project into smaller

segments and providing more ease-of-change during the development process
▬ Aims to produce high quality systems quickly, primarily through the use of

iterative Prototyping (at any stage of development), active user involvement,
and computerized development tools.

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

14 / 51

These tools may include Graphical User Interface (GUI) builders, Computer
Aided Software Engineering (CASE) tools, Database Management Systems

(DBMS), fourth-generation programming languages, code generators, and

object-oriented techniques
▬ Key emphasis is on fulfilling the business need, while technological or

engineering excellence is of lesser importance
▬ Project control involves prioritizing development and defining delivery

deadlines or “timeboxes”. If the project starts to slip, emphasis is on reducing
requirements to fit the timebox, not in increasing the deadline

▬ Generally includes Joint Application Development (JAD), where users are
intensely involved in system design, either through consensus building in

structured workshops, or through electronically facilitated interaction

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Software development methodologies

15 / 51

▬ Active user involvement is imperative
▬ Iteratively produces production software, as opposed to a throwaway

prototype
▬ Produces documentation necessary to facilitate future development and

maintenance
▬ Standard systems analysis and design techniques can be fitted into this

framework

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 16 / 51

Unified Process
● The Unified Software Development Process or Unified Process is a popular

iterative and incremental software development process framework. The

best-known and extensively documented refinement of the Unified Process is

the Rational Unified Process (RUP)
● The Unified Process is not simply a process, but rather an extensible

framework which should be customized for specific organizations or projects
● The first book to describe the process was titled The Unified Software

Development Process and published in 1999 by Ivar Jacobson, Grady Booch

and James Rumbaugh
● Iterative and Incremental

The Unified Process is an iterative and incremental development process.

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Unified Process

17 / 51

The Elaboration, Construction and Transition phases are divided into a series of

timeboxed iterations. (The Inception phase may also be divided into iterations

for a large project). Each iteration results in an increment, which is a release of

the system that contains added or improved functionality compared with the

previous release. Although most iterations will include work in most of the

process disciplines (e.g. Requirements, Design, Implementation, Testing) the

relative effort and emphasis will change over the course of the project

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Unified Process

18 / 51

● Use Case Driven
In the Unified Process, use cases are used to capture the functional

requirements and to define the contents of the iterations. Each iteration takes a

set of use cases or scenarios from requirements all the way through

implementation, test and deployment
● Architecture Centric

The Unified Process insists that architecture sit at the heart of the project team's

efforts to shape the system. Since no single model is sufficient to cover all

aspects of a system, the Unified Process supports multiple architectural models

and views. One of the most important deliverables of the process is the

executable architecture baseline which is created during the Elaboration phase.

This partial implementation of the system serves to validate the architecture and

act as a foundation for remaining development

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes

Unified Process

19 / 51

● Risk Focused
The Unified Process requires the project team to focus on addressing the most
critical risks early in the project life cycle. The deliverables of each iteration,

especially in the Elaboration phase, must be selected in order to ensure that the

greatest risks are addressed first
● Refinements of the Unified Process vary from each other in how they categorize

the project disciplines or workflows. The Rational Unified Process defines nine

disciplines: Business Modeling, Requirements, Analysis and Design,

Implementation, Test, Deployment, Configuration and Change Management,

Project Management, and Environment. Agile refinements of UP such as

OpenUP/Basic and the Agile Unified Process simplify RUP by reducing the

number of disciplines and the number of expected artifacts

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 20 / 51

Agile software development
● Agile software development refers to a group of software development

methodologies based on iterative development, where requirements and

solutions evolve through collaboration between self-organizing cross-functional

teams
● Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:
▬ Individuals and interactions over processes and tools
▬ Working software over comprehensive documentation
▬ Customer collaboration over contract negotiation
▬ Responding to change over following a plan

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 21 / 51

● Agile methods generally promote a project management process that

encourages frequent inspection and adaptation, a leadership philosophy that

encourages teamwork, self-organization and accountability, a set of

engineering best practices that allow for rapid delivery of high-quality
software, and a business approach that aligns development with customer
needs and company goals

● Agile methods break tasks into small increments with minimal planning, and

don't directly involve long-term planning
● Iterations are short time frames ('timeboxes') that typically last from one to four

weeks. Each iteration is worked on by a team through a full software
development cycle, including planning, requirements analysis, design, coding,

unit testing, and acceptance testing when a working product is demonstrated to

stakeholders

Agile software development

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 22 / 51

● An iteration may not add enough functionality to warrant a market release, but

the goal is to have an available release (with minimal bugs) at the end of each

iteration. Multiple iterations may be required to release a product or new features
● Team members normally take responsibility for tasks that deliver the functionality

an iteration requires. They decide individually how to meet an iteration's

requirements
● Agile methods emphasize face-to-face communication over written

documents when the team is all in the same location. When a team works in

different locations, they maintain daily contact through videoconferencing,
voice, e-mail, etc

● Most agile teams work in a single open office, which facilitates such

communication. Team size is typically small (5-9 people) to help make team

communication and team collaboration easier

Agile software development

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 23 / 51

● No matter what development disciplines are required, each agile team will
contain a customer representative. This person is appointed by stakeholders

to act on their behalf and makes a personal commitment to being available
for developers to answer mid-iteration problem-domain questions. At the

end of each iteration, stakeholders and the customer representative review
progress and re-evaluate priorities with a view to optimizing the return on

investment and ensuring alignment with customer needs and company goals
● Agile emphasizes working software as the primary measure of progress.

This, combined with the preference for face-to-face communication, produces

less written documentation than other methods - though, in an agile project,

documentation and other artifacts rank equally with working product

Agile software development

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 24 / 51

● Specific tools and techniques such as continuous integration, automated or

xUnit test, pair programming, test driven development, design patterns,

domain-driven design, code refactoring and other techniques are often used

to improve quality and enhance project agility
● Principles behind the Agile Manifesto

▬ Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software

▬ Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage
▬ Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale
▬ Business people and developers must work together daily throughout the

project

Agile software development

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 25 / 51

▬ Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done
▬ The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation
▬ Working software is the primary measure of progress
▬ Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely
▬ Continuous attention to technical excellence and good design enhances agility
▬ Simplicity - the art of maximizing the amount of work not done - is essential
▬ The best architectures, requirements, and designs emerge from self-

organizing teams
▬ At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behavior accordingly

Agile software development

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 26 / 51

● Agile methods
▬ Agile Modeling
▬ Agile Unified Process (AUP)
▬ Agile Data Method
▬ Dynamic Systems Development Method (DSDM)
▬ Essential Unified Process (EssUP)
▬ Extreme programming (XP)
▬ Feature Driven Development (FDD)
▬ Getting Real
▬ Open Unified Process (OpenUP)
▬ Scrum

Agile software development

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 27 / 51

Agile Unified Process (AUP)
● Agile Unified Process (AUP) is a simplified version of the IBM Rational Unified

Process (RUP)
● It describes a simple, easy to understand approach to developing business

application software using agile techniques and concepts yet still remaining

true to the RUP
● Unlike the RUP, the AUP only has seven disciplines:

▬ Model - Understand the business of the organization, the problem domain

being addressed by the project, and identify a viable solution to address the

problem domain
▬ Implementation - Transform model(s) into executable code and perform a

basic level of testing, in particular unit testing

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 28 / 51

▬ Test - Perform an objective evaluation to ensure quality. This includes finding

defects, validating that the system works as designed, and verifying that the

requirements are met
▬ Deployment - Plan for the delivery of the system and to execute the plan to

make the system available to end users
▬ Configuration Management - Manage access to project artifacts. This

includes not only tracking artifact versions over time but also controlling and

managing changes to them
▬ Project Management - Direct the activities that takes place within the project.

This includes managing risks, directing people (assigning tasks, tracking

progress, etc.), and coordinating with people and systems outside the scope of

the project to be sure that it is delivered on time and within budget

Agile Unified Process (AUP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 29 / 51

▬ Environment - Support the rest of the effort by ensuring that the proper

process, guidance (standards and guidelines), and tools (hardware, software,

etc.) are available for the team as needed
● The Agile UP is based on the following philosophies:

▬ Your staff knows what they're doing - People are not going to read detailed

process documentation, but they will want some high-level guidance and/or

training from time to time. The AUP product provides links to many of the

details, if you are interested, but doesn't force them upon you
▬ Simplicity - Everything is described concisely using a handful of pages, not

thousands of them
▬ Agility - The Agile UP conforms to the values and principles of the agile

software development and the Agile Alliance

Agile Unified Process (AUP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 30 / 51

▬ Focus on high-value activities - The focus is on the activities which actually

count, not every possible thing that could happen to you on a project
▬ Tool independence - You can use any toolset that you want with the Agile UP.

The recommendation is that you use the tools which are best suited for the job,

which are often simple tools
▬ You'll want to tailor the AUP to meet your own needs

● The Agile Unified Process distinguishes between two types of iterations. A

Development Release Iteration results in a deployment to the Quality

Assurance and/or Demo area. A Production Release Iteration results in a

deployment to the Production area

Agile Unified Process (AUP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 31 / 51

Extreme Programming (XP)
● Proponents of Extreme Programming and agile methodologies in general regard

ongoing changes to requirements as a natural, inescapable and desirable
aspect of software development projects; they believe that adaptability to

changing requirements at any point during the project life is a more realistic and

better approach than attempting to define all requirements at the beginning of

a project and then expending effort to control changes to the requirements
● XP sets out to reduce the cost of change by introducing basic values, principles

and practices. By applying XP, a system development project should be more
flexible with respect to changes

● XP describes four basic activities that are performed within the software

development process:

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 32 / 51

▬ Coding - The advocates of XP argue that the only truly important product of

the system development process is code (a concept to which they give a

somewhat broader definition than might be given by others). Without code you

have nothing. Coding can be drawing diagrams that will generate code,

scripting a web-based system or coding a program that needs to be compiled.

Coding can be used to figure out the most suitable solution. Coding can

help to communicate thoughts about programming problems. Code is always

clear and concise and cannot be interpreted in more than one way
▬ Testing - One cannot be certain of anything unless one has tested it. Testing is

not a perceived, primary need for the customer. A lot of software is shipped

without proper testing and still works. In software development, XP says this

means that one cannot be certain that a function works unless one tests it

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 33 / 51

You can be uncertain whether what you coded is what you meant. To test

this uncertainty, XP uses Unit Tests. These are automated tests that test the

code. You can be uncertain whether what you meant is what you should
have meant. To test this uncertainty, XP uses acceptance tests based on the

requirements given by the customer in the exploration phase of release

planning
▬ Listening - Programmers do not necessarily know anything about the

business side of the system under development. The function of the system
is determined by the business side. For the programmers to find what the

functionality of the system should be, they have to listen to business. They

have to try to understand the business problem, and to give the customer

feedback about his or her problem, to improve the customer's own

understanding of his or her problem

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 34 / 51

▬ Designing - From the point of view of simplicity, one could say that system
development doesn't need more than coding, testing and listening. If

those activities are performed well, the result should always be a system that

works. In practice, this will not work. One can come a long way without

designing but at a given time one will get stuck. The system becomes too
complex and the dependencies within the system cease to be clear. One

can avoid this by creating a design structure that organizes the logic in the
system. Good design will avoid lots of dependencies within a system; this

means that changing one part of the system will not affect other parts of the

system

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 35 / 51

● Extreme Programming recognize five values:
▬ Communication - Building software systems requires communicating system

requirements to the developers of the system. In formal software development

methodologies, this task is accomplished through documentation. Extreme

Programming techniques can be viewed as methods for rapidly building and

disseminating institutional knowledge among members of a development
team. The goal is to give all developers a shared view of the system which

matches the view held by the users of the system
▬ Simplicity - Extreme Programming encourages starting with the simplest

solution. Extra functionality can then be added later. The difference between

this approach and more conventional system development methods is the

focus on designing and coding for the needs of today instead of those of

tomorrow, next week, or next month.

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 36 / 51

Proponents of XP acknowledge the disadvantage that this can sometimes

entail more effort tomorrow to change the system; their claim is that this is

more than compensated for by the advantage of not investing in possible
future requirements that might change before they become relevant.
Related to the "communication" value, simplicity in design and coding should

improve the quality of communication.

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 37 / 51

▬ Feedback
Feedback from the system - by writing unit tests, or running periodic

integration tests, the programmers have direct feedback from the state of the

system after implementing changes

Feedback from the customer - The functional tests (aka acceptance tests)

are written by the customer and the testers. They will get concrete

feedback about the current state of their system. This review is planned once

in every two or three weeks so the customer can easily steer the development

Feedback from the team - When customers come up with new requirements

in the planning game the team directly gives an estimation of the time that it

will take to implement

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 38 / 51

▬ Courage - One is the commandment to always design and code for today and

not for tomorrow. This is an effort to avoid getting bogged down in design and

requiring a lot of effort to implement anything else. Courage enables

developers to feel comfortable with refactoring their code when
necessary. This means reviewing the existing system and modifying it so that

future changes can be implemented more easily. Courage is knowing when
to throw code away: courage to remove source code that is obsolete, no

matter how much effort was used to create that source code. Courage means
persistence: a programmer might be stuck on a complex problem for an entire

day, then solve the problem quickly the next day, if only they are persistent

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 39 / 51

▬ Respect - In Extreme Programming, team members respect each other

because programmers should never commit changes that break
compilation, that make existing unit-tests fail, or that otherwise delay the work

of their peers. Members respect their work by always striving for high
quality and seeking for the best design for the solution at hand through

refactoring. Nobody on the team should feel unappreciated or ignored. This

ensures high level of motivation and encourages loyalty toward the team,

and the goal of the project. This value is very dependent upon the other

values, and is very much oriented toward people in a team

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 40 / 51

● Extreme Programming has 12 practices, grouped into four areas, derived from

the best practices of software engineering:
▬ Fine scale feedback

► Pair programming
Pair programming means that all code is produced by two people

programming on one task on one workstation. One programmer has control

over the workstation and is thinking mostly about the coding in detail. The

other programmer is more focused on the big picture, and is continually

reviewing the code that is being produced by the first programmer.

Programmers trade roles regularly. The pairs are not fixed: it's recommended

that programmers try to mix as much as possible, so that everyone knows

what everyone is doing, and everybody can become familiar with the whole

system

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 41 / 51

► Planning game
The main planning process within Extreme Programming is called the

planning game. The game is a meeting that occurs once per iteration,

typically once a week. The planning process is divided into two parts:
○ Release Planning - This is focused on determining what requirements

are included in which near-term releases, and when they should be

delivered. The customers and developers are both part of this. Release

Planning consists of three phases:

Exploration Phase - In this phase the customer will provide a short list

of high-value requirements for the system. These will be written down on

user story cards (write a story, estimate a story, split a story)

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 42 / 51

Commitment Phase - Within the commitment phase business and

developers will commit themselves to the functionality that will be

included and the date of the next release (sort by value, sort by risk, set

velocity, choose scope)

Steering Phase - In the steering phase the plan can be adjusted, new

requirements can be added and/or existing requirements can be

changed or removed
○ Iteration Planning - This plans the activities and tasks of the developers.

In this process the customer is not involved. Iteration Planning also

consists of three phases:

Exploration Phase - Within this phase the requirement will be translated

to different tasks. The tasks are recorded on task cards (translate the

requirement to tasks, combine/split task, estimate task)

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 43 / 51

Commitment Phase - The tasks will be assigned to the programmers

and the time it takes to complete will be estimated (a programmer

accepts a task, programmer estimates the task, set load factor,

balancing)

Steering Phase - The tasks are performed and the end result is matched

with the original user story (get a task card, find a partner, design the

task, write unit test, write code, run test, refactor, run functional test)
► Test driven development

Unit tests are automated tests that test the functionality of pieces of the code

(e.g. classes, methods). Within XP, unit tests are written before the
eventual code is coded. This approach is intended to stimulate the

programmer to think about conditions in which his or her code could fail.

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 44 / 51

XP says that the programmer is finished with a certain piece of code when

he or she cannot come up with any further condition on which the code may

fail
► Whole team

Within XP, the "customer" is not the one who pays the bill, but the one
who really uses the system. XP says that the customer should be on hand

at all times and available for questions
▬ Continuous process

► Continuous integration
The development team should always be working on the latest version of

the software.

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 45 / 51

Since different team members may have versions saved locally with various

changes and improvements, they should try to upload their current version to

the code repository every few hours, or when a significant break presents

itself. Continuous integration will avoid delays later on in the project cycle,

caused by integration problems
► Design improvement

Because XP doctrine advocates programming only what is needed today,

and implementing it as simply as possible, at times this may result in a

system that is stuck. One of the symptoms of this is the need for dual (or

multiple) maintenance: functional changes start requiring changes to

multiple copies of the same (or similar) code. Another symptom is that

changes in one part of the code affect lots of other parts.

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 46 / 51

XP doctrine says that when this occurs, the system is telling you to refactor
your code by changing the architecture, making it simpler and more
generic

► Small releases
The delivery of the software is done in predetermined releases (sometimes

called 'Builds'). The release plan is determined when initiating the project.

Usually each release will carry a small segment of the total software,

which can run without depending on components that will be built in
the future. The small releases help the customer to gain confidence in the

progress of the project. The small releases are only alpha releases and are
not intended to go live. This helps maintain the concept of the whole team

as the customer can now come up with his suggestions on the project

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 47 / 51

Extreme Programming (XP)

▬ Shared understanding
► Coding standard

Coding standard is an agreed upon set of rules that the entire development

team agree to adhere to throughout the project. The standard specifies a

consistent style and format for source code, within the chosen

programming language, as well as various programming constructs and
patterns that should be avoided in order to reduce the probability of defects.

The coding standard may be a standard conventions specified by the

language vendor (e.g The Code Conventions for the Java Programming

Language, recommended by Sun), or custom defined by the development

team

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 48 / 51

Extreme Programming (XP)

► Collective code ownership
Collective code ownership means that everyone is responsible for all the
code; this, in turn, means that everybody is allowed to change any part of
the code. Pair programming contributes to this practice: by working in

different pairs, all the programmers get to see all the parts of the code. A

major advantage claimed for collective ownership is that it speeds up the

development process, because if an error occurs in the code any
programmer may fix it. By giving every programmer the right to change the

code, there is risk of errors being introduced by programmers who think

they know what they are doing, but do not foresee certain dependencies.

Sufficiently well defined unit tests address this problem: if unforeseen

dependencies create errors, then when unit tests are run, they will show

failures

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 49 / 51

Extreme Programming (XP)

► Simple design
Programmers should take a "simple is best" approach to software design.

Whenever a new piece of code is written, the author should ask themselves

'is there a simpler way to introduce the same functionality?'. If the

answer is yes, the simpler course should be chosen. Refactoring should also

be used, to make complex code simpler
► System metaphor

The system metaphor is a story that everyone - customers, programmers,

and managers - can tell about how the system works. It's a naming concept
for classes and methods that should make it easy for a team member to

guess the functionality of a particular class/method, from its name only.

For each class or operation the functionality is obvious to the entire team

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 50 / 51

▬ Programmer welfare
► Sustainable pace

The concept is that programmers or software developers should not work
more than 40 hour weeks, and if there is overtime one week, that the next

week should not include more overtime. Since the development cycles are

short cycles of continuous integration, and full development (release)
cycles are more frequent, the projects in XP do not follow the typical

crunch time that other projects require (requiring overtime). Also, included in

this concept is that people perform best and most creatively if they are
rested. A key enabler to achieve sustainable pace is frequent code-merge
and always executable & test covered high quality code.

Extreme Programming (XP)

Corso di Laurea Magistrale in Informatica, Università di Padova
Tecnologie open-source, Anno accademico 2010/2011

2.5 Italy License Development Processes 51 / 51

The constant refactoring way of working enforces team members with

fresh and alert minds. The intense collaborative way of working within the

team drives a need to recharge over weekends. Well-tested, continuously

integrated, frequently deployed code and environments also minimize the
frequency of unexpected production problems and outages, and the

associated after-hours nights and weekends work that is required

Extreme Programming (XP)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

